

Dynamic Location Service Modification (Group 11)

Royce Lim Jie Han
National University of Singapore

e0030923@u.nus.edu

Ryan Christian Harrs
National University of Singapore

e0445611@u.nus.edu

Andrew Ong Ming En

National University of Singapore

e0175461@u.nus.edu

Wei Jianxin

National University of Singapore

e0454490@u.nus.edu

Joel Ng Zhi Hao

National University of Singapore

e0191323@u.nus.edu

ABSTRACT
This project looks into Dynamic Location Service Modification

where location services are spoofed through falsifying GPS data

and/or WIFI MAC Addresses. We used Software Defined Radios

(SDR), more specifically - LimeSDR Mini which is connected to a

Raspberry PI 3. We also used NodeMCU to broadcast beacon

frames. In this project, we have two key objectives that we would

like to accomplish - a successful attack (using both GPS and WIFI)

on static and dynamic location spoofing as well as provide a

software that allows location spoofed victims to assess the

probability that their location has been spoofed. Due to the

prevalence of smartphones, our group focused on our attacks on

smartphones, and have developed an android application for

android smartphone users.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—

Security and Protection;

General Terms

Security, Location Service

Keywords
GPS, Wi-Fi, Location, Spoofing

1. INTRODUCTION
With the rise of driverless technology in the market, we believe that

it would only be a matter of time when all vehicles would be self-

driven, aided by accurate location services technology. Dynamic

location spoofing presents a threat to technologies that are

dependent on location services. Gaming applications that uses

location services heavily like Pokemon Go, will also be affected.

Users can spoof their location while they are playing the game.

Location spoofing has been proven to be fairly easy to do. Without

physically touching a device or jailbreaking one, an anonymous

hacker can easily trick your mobile device into thinking its time and

position data are somewhere and something completely different

from what they actually are. Mobile devices use both Wi-Fi and

GPS to determine where they are. With SDR platforms and Wi-Fi

based positioning spoofing, both Android and iPhone devices are

vulnerable to location spoofing.

When mobile devices use GPS only to locate themselves, they are

receiving radio waves between satellites and a physical receiver

inside the mobile. This can be exploited by sending false radio

waves to the phone making it think it is somewhere it isn’t.

Wi-Fi is able to tell a device where it is based off of where other

phones have been when connected to the same Wi-Fi. When GPS

is used to find the current location, the phone will also scan nearby

publicly accessible networks and records the information online.

Then when another phone is near the network, it can use the data of

the nearby networks and the previous person’s GPS data to

determine where they are, instead of using their own GPS. This can

be exploited by creating false Wi-Fi zones that have GPS data

saying they are somewhere completely different from where you

may be.

Our main contributions in the project are listed as follows.

-We deceived nearby smartphones to display a fixed location or

moving path

-We build an application which can successfully detect attacks on

mobile phone

-We research on why new version of iphone is resistant to location

spoofing to some extent and how can it prevent those attacks.

In this paper, we first introduce the theory of Global Positioning

System and Wi-Fi Positioning System in Section 2. In Section 3 &

4, we illustrate the design details including hardware, software,

steps and code. Subsequently, we conduct extensive experiments

on GPS spoofing and Wi-Fi spoofing in Section 5 & 6. Moreover,

we analysis our experiment results in Section 7. Finally, we further

research on how to detect and defense against location spoofing

attack in Section 8 and propose some thoughts about what can be

done in the future in Section 9.

2. ABOUT GPS AND WPS

2.1 GPS (Global Positioning System)

GPS is a satellite-based radio navigation system. It provides

humans with accurate navigation, positioning and timing services.

When there is an unobstructed line from receiver to four or more

GPS satellites, the receiver can receive and send signals to the

satellites and compute its position and time deviation. As shown in

Figure 1, GPS space segment is composed of 24-32 satellites, 6

orbits, whose planes have approximately 55° inclination. On each

orbit, there are at least 4 satellites, whose orbital period is about 11

hours and 58 minutes [1]. The orbits are arranged so that at least six

satellites are always within line of sight from everywhere on the

Earth's surface.

Figure 1: World Geodetic System [2]

2.2 WPS (Wi-Fi positioning system)

However, when GPS navigation is not accurate due to various

causes including weak signal or obstructed by skyscrapers, WPS

(Wi-Fi positioning system) may be useful. Nowadays, more and

more Wi-Fi hotspots (also known as APs, or wireless routers) tend

to receive at least one AP signal at any point in the city. Each

wireless AP has a globally unique MAC address, and generally

most of wireless AP does not move for a long period of time. When

our device is turned on Wi-Fi, it can scan and collect the

surrounding AP signals no matter whether it is encrypted or

connected. Even if the signal strength is insufficient to be displayed

in the wireless signal list, the MAC address of AP can be obtained.

The current metering methods using MAC addresses are displayed

in Figure 2. The device then sends the data indicating the APs to

the location server, which is based on an AP database containing

the relationship between MAC address and geographic address.

The server calculates the geographic location of the device and

sends back according to the geographic location of each AP and its

signal strength. The location service provider should constantly

update and supplement its database to ensure the accuracy of

positioning in case the AP location changes. Currently, WPS

providers such as Google and Apple continually collect data

through the phones of their customers and keep their Wi-Fi location

databases updated.

Figure 2: Positioning techniques [3]

3. EXPERIMENT SETUP

Figure 3: Location Spoofing Experiment Setup

3.1 Hardware

● RaspberryPI Model 3

● LimeSDR Mini

● NodeMCU ESP8266

● Sony Xperia XA1 Plus

● iPhone XS

3.2 Software

● Operating System: Raspbian

● GPS Signal Simulator: gps-sdr-sim

● Microcontroller IDE: Arduino

● Android 8.0 Oreo (for the mobile application)

● Application: GPS Spoof Detector

4. INSTALLATION
4.1 Setup for Raspberry Pi 3

Install newest packages in Rasbian OS:

> sudo apt-get update
> sudo apt-get upgrade

Install gcc and cmake to build and compile C code:

> sudo apt-get install software-properties-common
> sudo apt-get install cmake

4.2 Packages for GPS Spoofing

4.2.1 LimeSuite library
We download ScratchRadio as the tool contains package

dependencies for SDR components (i.e. LimeSuite)

Installation commands:

> git clone https://github.com/myriadrf/ScratchRadio.git
> sudo ./scripts/install_deps.sh
> make LimeSuite
> make clean

4.2.2 gps-sdr-sim
gps-sdr-sim is a tool to generate GPS signal data streams used by

software-defined radios (SDRs) to convert into radio frequency

(RF).

Installation commands:

> git clone https://github.com/osqzss/gps-sdr-sim.git
> cd gps-sdr-sim
> gcc gpssim.c -lm -O3 -o gps-sdr-sim -
DUSER_MOTION_SIZE=4000
> cd player
> make limeplayer

4.3 Packages for Wi-Fi/ BSSID Spoofing

There are various hardware mediums used for Wi-Fi spoofing, such

as Wi-Fi adaptors or access points. For our case, we will be using

NodeMCU which runs on ESP8266 Wi-Fi chip. As such, we will

need to install Arduino to compile and upload C code to the

hardware.

4.3.1 Arduino
The simplest way to install Arduino is to run:

> sudo apt-get install arduino

However, this is a bare bones installation without any add-on tools,

including the ability to interact with Arduino command line

interface (CLI). Alternatively, launch Chrome on Raspberry Pi,

head to magpi.cc/2tPw8ht, and download Arduino using the Linux

ARM link. Extract the file to /opt directory , then open a Terminal

and run the install.sh script.

Installation commands:

> cd ~/Downloads

> tar -xf arduino-1.8.3-linuxarm.tar.xz
> sudo mv arduino-1.8.3 /opt
> sudo /opt/arduino-1.8.3/install.sh

Arduino by default does not include ESP8266 board. We can run

the following commands to add ESP8266 board URL and install

board packages:

> /opt/arduino-1.8.3/arduino --pref
"boardsmanager.additional.urls=http://arduino.esp8266.com/sta
ble/package_esp8266com_index.json" --save-prefs
> /opt/arduino-1.8.3/arduino --install-boards esp8266:esp8266 --
save-prefs

5. GPS SIGNALS SPOOFING
Spoofing GPS signals is a simple task with the help of a SDR (i.e.

LimeSDR mini). The idea here is to simulate a stream of GPS signal

based on our specifications and playback using an SDR so that the

signal can be received by GPS receivers nearby.

5.1 Obtain GPS Broadcast Ephemerides
GPS broadcast ephemerides (BRDC) are extrapolated satellite orbit

data transmitted by satellites to receiver for navigation purposes.

These data are archived daily and are available publicly through the

NASA’s Crustal Dynamics Data Information System (CDDIS)

website. The data is required for gps-sdr-sim tool to generate GPS

data streams.

Installation command format:

> wget ftp://cddis.nasa.gov/gnss/data/daily/<4-digit
year>/brdc/brdc<3-digit date>0.<2-digit year>n.Z
> uncompress brdc<3-digit date>0.<2-digit year>n.Z

Formatted example (year - 2019, date - 25 October):

> wget
ftp://cddis.nasa.gov/gnss/data/daily/2019/brdc/brdc2980.19n.Z
> uncompress brdc2980.19n.Z

3-digit date refer to the number of days since the start of the year at

1st January, with values running from 1 to 365. The value can be

obtained by running the command:

> date +%j

5.2 Obtain GPS Sample Signal File

We can feed the downloaded ephemerides data through gps-sdr-sim

to generate a binary file containing GPS signal.

Command format:

> gps-sdr-sim \
 -e <brdc file> \ # GPS ephemerides
 -u <user motion> # NMEA GGA in csv
 —l <lat,lon,alt> \ # static location
 -s <sampling rate> \ # default 2.6MHz
 -b <IQ bit> \ # 1 for limeplayer
 -o <output> \ # default gpssim.bin

For static GPS location, specify the ‘-l’ parameter instead of ‘-u’

parameter, while inserting latitude, longitude and altitude values of

our intended spoofing location.

http://magpi.cc/2tPw8ht

For dynamic GPS locations, specify the ‘-u’ parameter instead of ‘-

l’. This parameter requires a National Marine Electronics

Association (NMEA) Fix information (GGA) formatted CSV file.

To generate the file, these steps are executed in-order:

1. Sketch a route using Google Earth

2. Export the route file in KML format.

3. Load the file into SatGen’s NMEA simulator to convert KML

file to NMEA GGA text file. (Note: set output rate to 10Hz)

4. Convert NMEA GGA text file to user motion CSV file using the

‘nmea2um’ tool provided in gps-sdr-sim/satgen:

> ./nmea2um <nmea_gga> <user_motion>

5.3 Playback GPS Signals

Use the generated GPS signal file as an input for limeplayer to

broadcast the signals to its surroundings.

Command format:

> limeplayer \
 -g 0.5 \ # RF gain [0.0 … 1.0]
 -b 1 \ # IQ bit count
 -s 2600000 \ # sampling rate
 < gpssim.bin \ # GPS signal file

5.4 Pipelining the Process

To make the tools work in conjunction with one another, our team

have made an assembly line chaining the necessary tools with the

help of a bash script. The spoof_gps script can be found under our

Github repository in gps-sim-sdr folder:

https://github.com/royceljh/LocationServicesSpoofing.

The pipeline starts from obtaining the latest (if not already

downloaded) BRDC data from CDDIS FTP server. The user will

then input a GPS signal file name to be generated. If the file name

was previously created, the script will use the existing file and

launch it on limeplayer. Else, the user will input the latitude and

longitude data which will be used to generate the 400 seconds worth

of GPS sample data. It then proceed to be broadcasted by

limeplayer using pre-defined parameters.

6. WI-FI SIGNALS SPOOFING
The Wi-Fi Positioning System (WPS) makes use of nearby Wi-Fi

hotspots and other wireless access points (APs) to triangulate or

“guess” the location of a device. This is especially useful indoors

where GPS signals are limited. Thus, by fabricating APs from

another location, the WPS on a smartphone can be fooled into

thinking that the device is currently in that specified location. As

discussed in the earlier sections, we know that WPS infers the

location based on BSSIDs or MAC addresses of nearby APs. In the

following subsections, we explore the usage of some tools to crawl

AP information and to broadcast beacons of spoofed BSSID

information.

6.1 Obtain Network Information From WiGLE

WiGle.net is a consolidated central database containing wireless

network information across the world [4]. Queries can be fired from

directly through their web interface or using their API.

Figure 4: WiGLE.net web user interface’s query results

For the purpose of being able to automate the crawling process, we

used API tokens (allocated to account holders) to query the web

server by sending our crafted HTTP request detailing the

specifications of our search criteria.

HTTP request format:

https://api.wigle.net/api/v2/network/search?onlymine=false&fir
st=0&latrange1=<1>&latrange2=<2>&longrange1=<3>&longrang
e2=<4>&lastupdt=<5>&encryption=<6>&freenet=false&paynet=f
alse&minQoS=<7>&resultsPerPage=<8>

Explanation of fields labelled <>

<1> and <2>: Latitude lower and upper bounds

<3> and <4>: Longitude lower and upper bounds

<5>: Last update time - this is set to 3 months prior to current date

as setting it too recent may result in zero search results.

<6>: Encryption criteria is set to WPA2

<7>: Minimum quality of signal is set to 2 to exclude weak signals

for better location accuracy.

<8>: The maximum number of results returned by the query is set

to 50.

We wrote a python code read in user-specified latitude and

longitude values and fire the crafted HTTP request to the web

server using authentic API tokens. The results containing network

information are stored in JSON format. By extracting the field

‘netid’, we can collate all the MAC addresses or BSSIDs of the

wireless networks found in the area of interest and write them to a

text file.

These information are used to build C code which is then uploaded

to NodeMCU. Since the code has to be compiled before uploading

to NodeMCU, there is no simple way to construct a variable

containing all the MAC addresses during run time. One method to

overcome this is to establish communication between Raspberry Pi

and NodeMCU so that Raspberry Pi will read the contents of the

MAC addresses file and transmit the information to NodeMCU,

which will receive and construct a variable to hold the values. We

implemented a much simpler approach, which is to directly

insert/replace into a predetermined line of code in C program with

the contents of the file specifying the variable that holds all the

MAC addresses. In this way, the code will be already contain the

variable before being compiled.

To accomplish this, the format of the MAC address file is as shown

below.

https://github.com/royceljh/LocationServicesSpoofing

Figure 5: Sample text file — a variable holding 50 MAC

addresses

Next, a command line text stream editor called SED is used to

insert/replace a line in the C code with our text. Specifically for our

code, the global variable will sit at the 2nd line of code to avoid

tampering with the main code beneath it.

Commands used:

> sed -i ‘2d’ macAddr.txt \ # Remove 2nd line
> sed -i ‘2i\<text to insert>’ macAddr.txt \ # Insert text into 2nd
line

6.2 NodeMCU Beacon Spammer

A beacon spamming tool that works on the ESP8266 chip is used

as a base template for our Wi-Fi spoofing purposes [5]. For the

original code, random MAC addresses were used for each SSIDs.

Beacon packets are crafted and repeatedly sent to 14 different Wi-

Fi channels. The format of the beacon frame is as follows [6]:

Figure 6: Beacon Frame structure

By changing the bytes for the field ‘BSSID’, the beacon frame can

be configured to carry our intended BSSID/MAC address.

As explained in section 6.1, the constant variable containing all the

MAC addresses will be inserted into this beacon spamming code.

By editing the base code, these MAC addresses can be attached to

dummy SSIDs and broadcasted its surroundings.

6.3 Pipelining the Process

Similar to GPS spoofing, we pipeline the process by chaining all

required tools through bash script. The spoof_wifi script can be

found under our Github repository in beacon-spammer folder:

https://github.com/royceljh/LocationServicesSpoofing.

The user is expected to input a static location with latitude and

longitude information. The surrounding networks from the location

will be automatically crawled from wigle.net and BSSIDs are

extracted from the JSON object while formatting the output. The

output is then inserted directly into the Arduino code which is then

verified and uploaded to NodeMCU using Arduino CLI.

The command to verify and upload:

> /opt/arduino-1.8.3/arduino -v verify —-board
esp8266:esp8266:nodemcuv2 --port /dev/ttyUSB0
beaconSpam.ino
> /opt/arduino-1.8.3/arduino -v upload —-board
esp8266:esp8266:nodemcuv2 --port /dev/ttyUSB0
beaconSpam.ino

7. ANALYSING ATTACK
Based on our experimentation Android and IPhone, namely the

Sony Xperia XA1+ (Android 8.0) and IPhone XS respectively, we

find that each individual attack vector is not sufficient to fool the

phone’s location services on default settings. The default settings

for Android is set to “High accuracy” which uses both GPS and Wi-

Fi information for location services. The iPhone location services

uses both information as well. Thus, we require both attack vectors

for a more reliable spoofing attempt.

7.1 Static spoofing

Figure 7: Spoofing NYC location from Singapore

The static latitude and longitude values used were 40.7131019, -

74.0072986.

The duration of smartphone being fooled by the spoofed signals

may vary for different phones. This is likely tied to the location

caching in phones. For Android, we can quickly refresh the cache

and fetch new location information by switching off and on the

https://github.com/royceljh/LocationServicesSpoofing

location services function. On the other hand, iPhone does not seem

to respond to the same method, which makes the time taken to spoof

a location unpredictable. There may be other factors that can

contribute to the unreliability of location spoofing. These can range

from having signal interference nearby to relying on cached

location instead of fetching fresh data.

Figure 8: NUS (left) and NYC City Hall (right)

The unresponsiveness of conventional maps like Google maps can

be seen in Figure 8. Using a GPS app that ties together with Google

maps, we can see that on the left image, the address field was filled

with NYC location but the corresponding location on Google maps

remained at the actual location on NUS campus. It took some delay

for the Google Maps location to update to the one specified in the

address field.

7.2 Dynamic Spoofing
In the earlier section describing how we conduct our 2 vector

attacks, we only mentioned the steps to simulate dynamic location

for GPS. Dynamic location based on Wi-Fi information is no

simple task. The main difficulty is knowing the exact location of

the ever-changing GPS signal and keeping the network information

in sync at all times during the dynamic route.

Nevertheless, dynamic GPS signals and static wide-range Wi-Fi

spoofing is sufficient for both the Android and iPhone to display

our fabricated route made using Google Earth.

Figure 9: Dynamic spoofing a route in Pokemon Go

7.3 Limitations
Firstly, the time taken to generate the GPS signal file is

tremendously slow due to the limited computation power on

Raspberry Pi 3, thus the delay for the initial run may nullify the

effects of live attacks. Subsequent runs on the same spoofing

location will not be affected as the process will use the existing GPS

signal file.

Secondly, there is no clear method of making the phone recognise

the spoofed signals instantly, and we could not predict the amount

of time taken for the spoofed location to take effect as different

applications or phones can have different location caching

mechanisms.

Last but not least, for this attack to work, our intended spoofing

location needs to meet the criteria of having multiple Wi-Fi access

points so that we could spoof multiple networks in order to

overwhelm the number of access points in the actual location. Also,

if there are numerous (>50) network being sensed in the actual

location, Wi-Fi spoofing may not work reliably.

8. MITIGATION TECHNIQUES

8.1. Our Mobile Application

We developed a mobile application called “GPS Location

Spoofing” to allow users to have an easy way to detect if their

phone’s location has been spoofed. Please visit our repository at

https://github.com/andrewome/GPS-Spoof-Detector to view the

source code. In general, to detect that a location has been spoofed,

regardless of the spoofing method used, the most common sign of

spoofing would be a drastic change in location [7]. Also, we

realised that it is likely that attackers would keep the value of the

altitude constant, so an altitude that does not change over time,

could also be a sign of spoofing. However, we considered that there

may be users are taking the lift while using our application. As

such, we keep our spoofing check simple, by basing it on distance

between each location object stored. This takes advantage of the

fact that location spoofing attacks take time for them to take effect

on the victim’s device, which allows the victim ample time to use

our application to detect if a spoofing has taken place.

The steps to use this mobile application is as follows:

https://github.com/andrewome/GPS-Spoof-Detector

1. Start storing the location of the phone when the user

presses the start button.

2. For every few (~5) seconds, it stores a new location.

3. The user clicks “Stop Collection and Analyse” after a

short span of time.

4. Show Results.

Results are computed based on the distances between each location

collected. This allows the application to detect any big jump in

location (>100m) which is common when location is spoofed.

However, we also recognize the fact that attackers may spoof

locations that are near the user’s location. As such, it may be wise

for the future developments of the application to cater to different

modes (e.g. walking, driving) and tweak the distance criteria based

on the mode.

Figure 10: GPS Spoof Detector Result Screen

8.1.1 Our Observations from the Experiment

Initially, during the first few minutes after the WiFi and GPS

spoofing attacks have started, both devices showed the accurate

location. After around 5 minutes, the devices managed to calibrate

to the spoofed locations.

When we stopped the collection, our application show that distance

check has failed (see figure 10) due to the big jump in distance

travelled from Singapore to New York City. This is an indication

that spoofing has occurred.

Figure 11: GPS Spoof Detector Failed Result Screen

8.2 Other Techniques Against GPS Spoofing

Most smartphone devices make use of a combination of Wi-Fi, GPS

radio signal, Bluetooth, and cellular networks to pinpoint the exact

location of the user. This feature will mitigate against GPS

Spoofing, as there are multiple sources of data, and the device could

pick the one that it deems most reliable. This is also supported by

our experiment, where GPS spoofing was conducted with Wi-Fi

spoofing, on “High Accuracy” mode, the phone did not respond to

the false GPS signals.

Beyond individuals, companies are also vulnerable to GPS

spoofing. One form of mitigation would be to position the

company’s antenna in a less visible and accessible place, where the

probability of picking up signals from ground level will be reduced.

Multiple copies of antenna could be used on both ends of the

building, allowing the company to detect any suspicious activity if

the signals received by the antennas differ drastically from one

another. An antenna that blocks fraudulent or interference-causing

signals could be used as well [8].

8.3 Other Techniques Against Wi-Fi Spoofing

The most characteristic sign of Wi-Fi spoofing is a sudden increase

in new networks in a short period of time. To ensure that this

technique works for places with few wireless networks, we need to

take into account of proportions. As such, to detect this form of

attack, we could look at the existing number of wireless networks

available, check the number of new wireless networks that have

appeared. If the new wireless networks exceeds a relative large

proportion of the existing number of wireless networks, then it

could be a sign that Wi-Fi spoofing took place.

Also, when there are numerous wireless networks with similar

names, it could be a sign of Wi-Fi spoofing as well. This is because

there is a possibility that these wireless networks have auto-

generated names.

9. FUTURE RESEARCH AND STUDY

Future studies and research on this matter could explore other

technological devices (and mobile operating systems like iOS) that

involve the use of a location service.

10. CONCLUSION

In conclusion, it is possible to perform GPS and Wi-Fi spoofing to

fool today’s technological smart devices, both statically and

dynamically. There are however, many viable options for

individuals and organisations to adopt, when faced with a possible

location spoofing situation.

REFERENCES

[1] “USCG Navcen,” GPS Frequently Asked Questions (FAQ).

[Online]. Available:

https://www.navcen.uscg.gov/?pageName=gpsFaq#What.

[Accessed: 08-Nov-2019].

[2] C. Allado, Patel, A. B. Kulkarni, and U. K. Sharma, “World

Geodetic System (WGS84),” GIS Geography, 18-Feb-2018.

[Online]. Available: https://gisgeography.com/wgs84-world-

geodetic-system/. [Accessed: 08-Nov-2019].

[3] S. Woo, S. Jeong, E. Mok, L. Xia, C. Choi, M. Pyeon, and J.

Heo, “Application of WiFi-based indoor positioning system for

labor tracking at construction sites: A case study in Guangzhou

MTR,” Automation in Construction, 19-Aug-2010.

[4] WIGLE. 2019. WIGLE: Wireless Network Mapping.

https://wigle.net/index

[Accessed on 2019-10-19].

[5] S. Kremser, “ESP8266 Beacon Spam,” 2017. [Online].

Available: https://github.com/spacehuhn/esp8266_beaconSpam.

[Accessed: 22-Oct-2019].

[6] R. Nayanajith, “802.11Mgmt : Beacon Frame,” 08-Oct-2014.

[Online]. Available: https://mrncciew.com/2014/10/08/802-11-

mgmt-beacon-frame/. [Accessed: 20-Oct-2019].

[7] K. Wang, S. Chen, and A. Pan, “Time and Position Spoofing

with Open Source Projects,” 2015.

[8] M. Korolov, “What is GPS spoofing? And how you can

defend against it.,” 07-May-2019. [Online]. Available:

https://www.csoonline.com/article/3393462/what-is-gps-spoofing-

and-how-you-can-defend-against-it.html. [Accessed: 01-Nov-

2019].

